Solutions to tutorial exercises for stochastic processes

T1. (a) Let A_{n} be the event that there exists a self-avoiding path starting in 0 of length n of which every vertex has spin 1 . Then A_{n} is measurable, since it only depends on finitely many vertices, i.e., the vertices inside B_{n}, the ball of radius n around 0 . We now have

$$
\{0 \longleftrightarrow \infty\}=\bigcap_{n=1}^{\infty} A_{n}
$$

which is measurable as a countable intersection of measurable sets.
(b) The number of self-avoiding walks of length n starting in 0 can be bounded by 4^{n}, since in every step of the path there are at most 4 directions to choose from. Let Γ_{n} be the set of self-avoiding paths of length n starting in 0 . It follows that

$$
\mathbb{P}_{p}(0 \longleftrightarrow \infty) \leq \mathbb{P}_{p}\left(A_{n}\right) \leq \sum_{\gamma \in \Gamma_{n}} \mathbb{P}_{p}\left(\omega_{v}=1 \text { for all } v \in \gamma\right) \leq 4^{n} p^{n}
$$

By taking $p<1 / 4$, the above bound goes to 0 for $n \rightarrow \infty$. It follows that $\mathbb{P}_{p}(0 \longleftrightarrow \infty)=$ 0 for all $p<1 / 4$ and that $p_{c} \geq 1 / 4$.
(c) We define a $*$-path to be a sequence of vertices $\left(x_{1}, \ldots, x_{n}\right)$ such that $\left\|x_{i}-x_{i-1}\right\|_{\infty} \leq 1$ for all $i=2, \ldots, n$. Similarly, we define a $*$-circuit of length n to be a sequence of vertices $\left(x_{0}, \ldots, x_{n}\right)$ such that $x_{0}=x_{n}$ and such that $\left\|x_{i}-x_{i-1}\right\|_{\infty} \leq 1$ for all $i=1, \ldots, n$. If $0 \longleftrightarrow \infty$, then we can find a $*$-circuit π of vertices with spin 0 such that 0 lies in the interior of the circuit. Suppose the circuit has length n, then π contains a vertex $(0, k)$ for some $0 \leq k \leq n$. It follows that there exists a selfavoinding $*$-path starting in $(0, k)$ of length $n-1$ and of which every vertex has spin 0 . Let Γ_{n-1}^{k} denote the set of all such $*$-paths. We have that $\left|\Gamma_{n-1}^{k}\right| \leq 8^{n-1}$, since a star path has 8 directions to choose from in each step. We find
$1-\mathbb{P}_{p}(0 \longleftrightarrow \infty)=\mathbb{P}_{p}(0 \longleftrightarrow \infty)$
$\leq \sum_{n=1}^{\infty} \mathbb{P}_{p}($ there exists a $*$-circuit π of vertices with spin 0 around 0$)$
$\leq \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \mathbb{P}_{p}\left(\exists \gamma \in \Gamma_{n-1}^{k}\right.$ such that $\omega_{v}=0$ for all $\left.v \in \gamma\right)$
$\leq \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \sum_{\gamma \in \Gamma_{n-1}^{k}} \mathbb{P}_{p}\left(\omega_{v}=0\right.$ for all $\left.v \in \gamma\right)$
$\leq \sum_{n=1}^{\infty} n 8^{n-1}(1-p)^{n-1} \rightarrow 0$,
for $p \uparrow 1$. It follows that there exists some $p_{0}<1$ such that $\mathbb{P}_{p_{0}}(0 \longleftrightarrow \infty) \geq 1 / 2$, and thus $p_{c} \leq p_{0}<1$.

T2. (a) Let η and ξ be two configurations with $\eta \leq \xi$. Suppose $\eta(x)=\xi(x)=0$. Then

$$
\begin{aligned}
c(x, \eta) & =\exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\eta(x)=\eta(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\eta(x) \neq \eta(y)\}}\right)\right) \\
& \leq \exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\xi(x)=\xi(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\xi(x) \neq \xi(y)\}}\right)\right)=c(x, \xi) .
\end{aligned}
$$

Now suppose $\eta(x)=\xi(x)=1$. Then

$$
\begin{aligned}
c(x, \eta) & =\exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\eta(x)=\eta(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\eta(x) \neq \eta(y)\}}\right)\right) \\
& \geq \exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\xi(x)=\xi(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\xi(x) \neq \xi(y)\}}\right)\right)=c(x, \xi) .
\end{aligned}
$$

(b) We compute

$$
\begin{aligned}
\varepsilon= & \inf _{\eta} c(x, \eta)+c\left(x, \eta_{x}\right) \\
= & \inf _{\eta} \exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\eta(x)=\eta(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\eta(x) \neq \eta(y)\}}\right)\right) \\
& +\exp \left(-\beta\left(\sum_{y \sim x} \mathbb{1}_{\{\eta(x) \neq \eta(y)\}}-\sum_{y \sim x} \mathbb{1}_{\{\eta(x)=\eta(y)\}}\right)\right) \\
= & \min _{0 \leq k \leq 2 d} \exp (-\beta(k-(2 d-k)))+\exp (-\beta((2 d-k)-k)) \\
= & \min _{0 \leq k \leq 2 d} 2 \cosh (\beta(2 d-2 k))=2 .
\end{aligned}
$$

Note that $a(x, u)=0$ whenever $x \neq u$ and $x \nsim u$. Now suppose $x \sim u$. Then

$$
\begin{aligned}
a(x, u) & =\sup _{\eta}\left|c(x, \eta)-c\left(x, \eta_{u}\right)\right| \\
& =\sup _{\eta}\left|\exp \left(-\beta\left(\sum_{\substack{y \sim x \\
y \neq u}} \mathbb{1}_{\{\eta(x)=\eta(y)\}}-\sum_{\substack{y \sim x \\
y \neq u}} \mathbb{1}_{\{\eta(x) \neq \eta(y)\}}\right)\right)\left(e^{-\beta}-e^{\beta}\right)\right| \\
& =\left(e^{\beta(2 d-1)}\right)\left(e^{\beta}-e^{-\beta}\right)
\end{aligned}
$$

It follows that

$$
M=\sum_{u \neq x} a(x, u)=2 d e^{2 d \beta}\left(1-e^{-2 \beta}\right) .
$$

T3. Consider the bijection $\phi: S \rightarrow S$ given by

$$
\phi(\eta)(x)= \begin{cases}\eta(x) & \text { if } x \text { even } \\ \eta_{x}(x) & \text { if } x \text { odd }\end{cases}
$$

Define the generator $\mathcal{L}=\mathcal{L}_{\beta}$ and its domain $\mathcal{D}(\mathcal{L})$ in the usual way. Then $f \in \mathcal{D}(\mathcal{L})$ if and only if $f \circ \phi \in \mathcal{D}(\mathcal{L})$ since $\phi\left(\eta_{x}\right)=\phi(\eta)_{x}$ and therefore

$$
\sup _{\eta}\left|f\left(\phi\left(\eta_{x}\right)\right)-f(\phi(\eta))\right|=\sup _{\xi}\left|f\left(\xi_{x}\right)-f(\xi)\right|
$$

since ϕ is a bijection. Moreover

$$
\begin{aligned}
c_{\beta}(x, \phi(\eta)) & =\exp \left(-\beta \sum_{y: y \sim x}(2 \phi(\eta)(x)-1)(2 \phi(\eta)(y)-1)\right) \\
& =\exp \left(\beta \sum_{y: y \sim x}(2 \eta(x)-1)(2 \eta(y)-1)\right)=c_{-\beta}(x, \eta) .
\end{aligned}
$$

Therefore $\mathcal{L}_{\beta}(f \circ \phi)=\mathcal{L}_{-\beta} f$. We know that the stochastic Ising model with parameter $-\beta>0$ is ergodic. Therefore there exists a unique invariant measure μ such that for all $f \in \mathcal{D}(\mathcal{L})$, it holds that

$$
0=\int \mathcal{L}_{-\beta} f \mathrm{~d} \mu=\int \mathcal{L}_{\beta}(f \circ \phi) \mathrm{d} \mu=\int \mathcal{L}_{\beta} f \mathrm{~d} \phi_{\sharp} \mu,
$$

where $\phi_{\sharp} \mu$ is the pushforward measure defined by $\phi_{\sharp} \mu(A)=\mu\left(\phi^{-1}(A)\right)$. It follows that $\phi_{\sharp} \mu$ is an invariant measure for the model with parameter $\beta<0$. It remains to show that $\phi_{\sharp} \mu$ is the unique invariant measure. Suppose ν is an invariant measure. Then for all $f \in \mathcal{D}(\mathcal{L})$ we have

$$
0=\int \mathcal{L}_{\beta} f \mathrm{~d} \nu=\int \mathcal{L}_{-\beta}(f \circ \phi) \mathrm{d} \nu=\int \mathcal{L}_{-\beta} f \mathrm{~d} \phi_{\sharp} \nu,
$$

so that $\phi_{\sharp} \nu$ is an invariant measure for the model with parameter $-\beta>0$. Since this model is ergodic, it follows that $\nu\left(\phi^{-1}(A)\right)=\mu(A)$, for all $A \in \mathcal{S}$. Since ϕ is bijective, and since $\phi^{-1}=\phi$, it follows that $\nu(A)=\mu\left(\phi^{-1}(A)\right)$, for all $A \in \mathcal{S}$. We conclude that $\phi_{\sharp} \mu$ is the unique invariant measure.

